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The bounded functional interpretation of arithmetic in all finite types is able to 
interpret principles like weak König’s lemma without the need of any form of 
bar recursion. This interpretation requires the use of intensional (rule-governed) 
majorizability relations. This is a somewhat unusual feature. The main purpose of 
this paper is to show that if the base domain of the natural numbers is extended with 
nonstandard elements, then the bounded functional interpretation can be seen as 
falling out from a functional interpretation of nonstandard number theory without 
intensional notions. The original bounded functional interpretation can be seen as 
the trace left behind by the new interpretation when one sees it restricted to the 
standard number theoretical setting.
We also answer an open question regarding the conservativity of the transfer 
principle vis-à-vis functional interpretations of nonstandard arithmetic.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The bounded functional interpretation was introduced in [5]. In its workings and definition, it relies on 
a systematic use of the Howard/Bezem (strong) majorizability notion. A somewhat unusual feature is the 
presence of rule-governed (as opposed to axiomatic-governed) primitive relations: the so-called intensional
majorizability relations. This permits to show that bounded domains (in the sense of being bounded with 
respect to the intensional majorizability notion) enjoy some “compactness” properties, the paradigmatic 
example being the bounded domain of the Cantor space (thereby obtaining weak König’s lemma). Of course, 
the presence of rules in the deductive apparatus obfuscates a clear semantic picture. In this paper we show 
that if the number theory is allowed to have nonstandard elements, then we can define a new bounded 
functional interpretation, this time without intensional notions, and recover from it the original bounded 
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functional interpretation. In a sense, the nonstandard numbers provide a kind of “compactification” of the 
natural numbers, making them behave like a bounded domain.

The starting point for this paper was the recent functional interpretations of nonstandard arithmetic due 
to Benno van den Berg, Eyvind Briseid and Pavol Safarik [15]. Even a cursory look at the paper shows 
many similarities between their interpretation and the bounded functional interpretation (this is particularly 
striking in the intuitionistic case). As they say in the paper, their interpretation is inspired (in the classical 
case) by the similarities between Shoenfield’s functional interpretation [13] and the “reduction algorithm” of 
Edward Nelson for converting proofs in IST (Internal Set Theory) into proofs in ZFC (see [12]). Neither the 
interpretation of Berg et al. nor Nelson’s “reduction algorithm” is based on majorizability considerations. 
They are rather based on finiteness considerations. The ultimate goal of Berg et al. is to extract computa-
tional information – in the form of appropriate term witnesses – from proofs in the nonstandard systems. 
Their goal is feasible, but it comes with some costs. For instance, the transfer principle – a cornerstone of 
Nelson’s interpretation – has a trivial “reduction” in Nelson’s setting but, as pointed by Berg et al., does not 
have a term witnessing functional. (They conjecture that the transfer principle is nevertheless conservative 
over the base standard setting, but we show in Appendix A of this paper that this is not the case.) Given 
that they use term witnessing functionals, in the case of Berg et al. the road is open for replacing finiteness 
by majorizability (because majorizability arguments rely upon an appropriate theorem concerning the ma-
jorizability of closed terms, as in [8]). But why try making this replacement? Apart from the main objective 
of this paper, viz. to show that the bounded functional interpretation can be recast (without intensional 
notions) by considering the wider nonstandard setting, mere finiteness conditions are not as surprising as 
using majorizability notions because the interpretations based on the latter are able to validate so-called 
uniform boundedness principles (introduced in [9] and conveniently discussed in [10]), of which weak König’s 
lemma is a consequence.

For the sake of brevity, this paper only studies classical theories. In the next section, inspired by (but 
not following) Berg et al., we introduce the finite type system E-PAω

st of nonstandard arithmetic and de-
scribe some pertinent principles. In Section 3, we define the new majorizability interpretation and prove a 
corresponding soundness theorem. Section 4 discusses the sense in which the bounded functional interpre-
tation of [5] can be recovered from the interpretation of the nonstandard system. We also include a small 
Appendix A where we discuss the transfer principle, both in the new interpretation of this paper and in the 
interpretation of Berg et al.

2. Basic framework

Let E-PAω be the theory of extensional Peano arithmetic in all finite types. We follow the treatment of [10]
where there is only an equality for the base type 0. Equality at other types is defined extensionally and a 
pertinent axiom of extensionality is uphold. The main purpose of this section is to introduce an extension 
E-PAω

st of E-PAω. The language of this extension extends the language of E-PAω by having unary predicates 
stσ for each finite type σ (the predicates for standardness). Note that the terms of both languages remain 
the same. Before we proceed, let us give a word of caution: our theory E-PAω

st below differs from the theory 
E-PAω∗

st of Berg et al. not only by not having types for finite sequences but, more importantly, because it 
has different axioms concerning the new predicates stσ (note the second standardness axiom below).

The axioms of E-PAω
st are those of E-PAω together with the standardness axioms and the external induc-

tion rule. Let us introduce some notations and make some observations. First of all, since we are working 
in classical logic, we adopt as our logical primitives ∨ (disjunction), ¬ (negation) and the universal quanti-
fiers ∀xσ. The other logical connectives are understood as being defined in the usual manner. We also adopt 
the complete deduction system for classical logic exposed in [13]. The Howard/Bezem notion of strong 
majorizability (introduced in [8] and [2]) is defined by induction on the finite type:
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x ≤∗
0 y is x ≤ y

x ≤∗
ρ→σ y is ∀v∀u ≤∗

ρ v (xu ≤∗
σ yv ∧ yu ≤∗

σ yv)

This notion is fully studied in [10] under the notation y s-majσ x instead of our x ≤∗
σ. Strong majorizability 

is transitive. It is not in general reflexive (except for the base type 0). We say that an element xσ is monotone
if x ≤∗

σ x. It can be proved that if x majorizes some element, then x is monotone. Apart from types of degree 
0 and 1, it is not true (set-theoretically) that every element is majorizable. However, an important theorem, 
ultimately due to Howard in [8], says that for every closed term tσ of the language there is a closed term qσ

such that t ≤∗
σ q (provably so in, for instance, E-PAω). This result – which we call Howard’s majorizability 

theorem – plays a pivotal role in the bounded functional interpretation (and in the new interpretation of 
this paper).

A formula is called internal if it is part of the original language of E-PAω (i.e., the standard predicates 
st do not occur in the formula). Otherwise it is called external. We follow the convention of Nelson in 
reserving small Greek letters for denoting internal formulas, whereas capital Greek letters may denote any 
formula whatsoever (internal or external). Therefore, the axioms of E-PAω are only constituted by internal 
formulas. Note, also, that the equality and majorizability relations are given by internal formulas. The 
universal quantifiers ∀stxσ, ∀̃xσ and ∀̃stxσ are abbreviations of the universal quantifier relativized to the 
standard elements, to the monotone elements and, simultaneously, to the standard and monotone elements 
(respectively). We use similar abbreviations for the existential quantifier. Bounded quantifications of the 
form ∀x ≤∗

σ t (. . .) are defined in the usual way and also come in three varieties.
We are now ready to state the axioms of E-PAω

st that involve external formulas. The standardness axioms
are:

• x =σ y → (stσ(x) → stσ(y));
• stσ(y) → (x ≤∗

σ y → stσ(x));
• stσ(t), for each closed term t of type σ;
• stσ→τ (z) → (stσ(x) → stτ (zx));

where the types σ and τ are arbitrary. The external induction rule is

• From Φ(0) and ∀stn0(Φ(n) → Φ(n + 1)), infer ∀stn0Φ(n).

(External induction is formulated as a rule just as a matter of convenience. Since there is no restriction in 
the formulas Φ, the rule is equivalent to the corresponding axiom scheme.)

There are three principles which play an important role in the sequel. The proper formulation of the 
first two principles should be with tuples of variables. To ease readability, we formulate them with single 
variables.

I. Monotone Choice mACω
st: ∀̃stx∃̃sty φ(x, y) → ∃̃stf ∀̃stx∃̃y ≤∗fx φ(x, y).

II. Realization Rω: ∀x∃sty φ(x, y) → ∃̃stz∀x∃y ≤∗z φ(x, y).
III. Majorizability Axioms MAJωst: ∀stx∃sty (x ≤∗ y).

The first principle is a monotone form of restricted standardization, in Nelson’s terminology. In the 
terminology of Berg et al., it is a herbrandized form of the axiom of choice (restricted to internal formulas). 
Realization is a kind of uniform boundedness principle in the sense of Kohlenbach. By passing to the 
contrapositive, the realization principle can be rewritten in idealization form:

II’. Idealization Iω: ∀̃stz∃x∀y ≤∗z φ(x, y) → ∃x∀sty φ(x, y).



704 F. Ferreira, J. Gaspar / Annals of Pure and Applied Logic 166 (2015) 701–712
A simple argument shows that Iω entails the existence of nonstandard elements of type 0. In other 
words, it entails the existence of nonstandard natural numbers. To see this, just take φ(x, y) to be the 
formula x �= y. The argument relies on the fact that z + 1 � z. Let us see that a similar fact holds for 
each finite type. By recursion on the type, define xσ→τ + 1 as λwσ.((xw)τ + 1). We claim that, for each 
type ρ, ∀zρ(z + 1 �∗

ρ z). The proof is by induction on the type ρ. Suppose that zσ→τ + 1 ≤∗
σ→τ z. Then, 

(zσ→τ + 1)(0σ) ≤∗
τ z(0σ) (here 0σ is the “zero” of type σ as defined, for instance, in [10]; it is easy to see 

that 0σ is monotone). Hence, by definition of +1, we get z(0σ) + 1 ≤∗
τ z(0σ), contradicting the induction 

hypothesis. The point of this discussion is that idealization also entails the existence of nonstandard elements 
in each finite type.

Finally, the majorizability axioms are peculiar to our interpretation and have no counterpart in Nelson, 
nor in Berg et al.

3. The interpretation and its soundness

We are now ready to define the new interpretation of this paper. The interpretation has many similarities, 
and this is not a coincidence, with the Shoenfield-like bounded functional interpretation of [4]. As before, 
we indulge in some lack of precision and, for ease of reading, we formulate the interpretation with single 
variables (the official definition should have tuples of variables in appropriate places).

Definition 1. To each formula Φ we assign formulas ΦUst and ΦUst so that ΦUst is of the form 
∀̃stb∃̃stc ΦUst(b, c), with ΦUst(b, c) an internal formula, according to the following clauses:

1. ΦUst and ΦUst are simply Φ, for internal formulas Φ,
2. st(t)Ust is ∃̃stc [t ≤∗ c].

For the remaining cases, if we have already interpretations for Φ and Ψ given (respectively) by 
∀̃stb∃̃stc ΦUst(b, c) and ∀̃std∃̃ste ΨUst(d, e) then we define:

3. (Φ ∨ Ψ)Ust is ∀̃stb, d∃̃stc, e [ΦUst(b, c) ∨ ΨUst(d, e)],
4. (¬Φ)Ust is ∀̃stf ∃̃stb [∃̃b′ ≤∗ b ¬ΦUst(b′, fb′)],
5. (∀xΦ(x))Ust is ∀̃stb∃̃stc [∀x ΦUst(x, b, c)],

where the internal formulas between square brackets are the corresponding lower Ust-formulas.

As in [4], the explanation for the complication in clause (4) lies in the fact that one needs to ensure that 
(¬Φ)Ust is monotone in the b variable. It will be instrumental to use of the fact that the theory E-PAω

st
proves the following monotonicity property:

∀b, c∀c′ ≤∗ c (Φst(b, c′) → Φst(b, c)),

for every formula Φ of the language.
It is illustrative to work out explicitly the interpretations of the conditional and the existential quantifier. 

They are, modulo classical logic, as follows:

6. (Φ → Ψ)Ust is ∀̃stf, d∃̃stb, e [∀̃b′ ≤∗ b ΦUst(b′, fb′) → ΨUst(d, e)],
7. (∃xΦ(x))Ust is ∀̃stF ∃̃stf [∃̃f ′ ≤∗ f∃x∀̃b′ ≤∗Ff ′ΦUst(x, b′, f ′b′)].
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We skipped the interpretation of conjunction. The interested reader should consult the last paragraph of 
Section 5 of [4]. The phenomenon described there also applies to the present setting.

Theorem 1 (Soundness). Suppose that

E-PAω
st + mACω

st + Rω + MAJωst 	 Φ,

where Φ is an arbitrary formula (it may have free variables). Then there are closed monotone terms t of 
appropriate types such that

E-PAω
st 	 ∀̃stb ΦUst(b, tb).

Proof. We need to check two things: (1) that if Φ is an axiom of E-PAω
st + mACω

st + Rω + MAJωst, then there 
are closed monotone terms t of appropriate types such that ∀̃stb ΦUst(b, tb) is a theorem of the target theory 
E-PAω

st; (2) that the property of the theorem is preserved by the logical rules and the external induction 
rule. The verification of the external induction rule is straightforward: it uses the recursors and an inductive 
argument within the target theory E-PAω

st. The verifications of the logical rules are mostly analogous to 
those of the mentioned Shoenfield-like bounded functional interpretation of [4]. One that is not analogous 
(but is very simple) is the logical rule that infers ∀xΦ ∨Ψ from Φ ∨Ψ, where x is not free in Ψ. This rule is 
preserved because we have insisted that the witnessing terms are closed (note the difference with [4]). The 
reason why this is so is due to the fact that we treat unbounded quantifications as “computationally empty” 
(see clause (5) of the definition above). Ultimately, this is possible because the first-order domain has now 
nonstandard elements and can be seen as a “bounded” domain. Let us go through the (few) details. If Φ ∨Ψ
is provable then, by induction hypothesis there are closed terms t and q such that the target theory E-PAω

st
proves ∀̃stb, d (ΦUst(b, tbd, x) ∨ ΨUst(b, qbd)). Then, clearly

E-PAω
st 	 ∀̃stb, d (∀xΦUst(b, tbd, x) ∨ Ψ(b, qbd)Ust),

and this shows that the same terms t and q witness the interpretation of ∀xΦ ∨ Ψ.
The verifications that deserve special attention are the ones pertaining to the standardness axioms and to 

the characteristic principles. Given that x =σ y and x ≤∗
σ y express internal relations, it is easy to see that the 

interpretations of the first two standardness axioms are, respectively, ∀̃stb∃̃stc (x =σ y → (x ≤∗
σ b → y ≤∗

σ c))
and ∀̃stb∃̃stc (y ≤∗

σ b → (x ≤∗
σ y → x ≤∗

σ c)). It is clear that the term λb.b does the job for both of these 
axioms. To check the third standardness axiom, take a closed term t. One must show that there is a closed 
term q such that the theory E-PAω

st proves t ≤∗ q. Of course, this follows from Howard’s majorizability 
theorem. Regarding the fourth standard axiom, notice that (modulo equivalence in E-PAω

st):

(st(z) → (st(x) → st(zx)))Ust is ∀̃stb, c∃̃std [z ≤∗b → (x ≤∗c → zx ≤∗d)].

We need to check that there is a closed monotone term t such that

∀̃stb, c [z ≤∗b → (x ≤∗c → zx ≤∗tbc)]

is a theorem of the target theory E-PAω
st. Clearly, t := λb, c.bc is such a term.

Let us now consider monotone choice: ∀̃stx∃̃sty φ(x, y) → ∃̃stf ∀̃stx∃̃y ≤∗fx φ(x, y). Attentive computa-
tions show that, modulo equivalence in E-PAω

st, (¬∀̃stx∃̃sty φ(x, y))Ust is
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∀̃stg∃̃stb∃̃b′ ≤∗b∃̃x ≤∗b′∀̃c′ ≤∗gb′∀̃y ≤∗c′ ¬φ(x, y),

and that (∃̃stf ∀̃stx∃̃y ≤∗fx φ(x, y))Ust is

∀̃stH∃̃stg∃̃g′ ≤∗ g∃̃f ≤∗g′∀̃d′ ≤∗Hg′∀̃x ≤∗ d′∃̃y ≤∗fx φ(x, y).

Therefore, we must show that there are closed monotone terms t, q of appropriate types such that

∀̃stg, H [∃̃b′ ≤∗tgH∃̃x ≤∗b′∀̃c′ ≤∗gb′∀̃y ≤∗c′ ¬φ(x, y)∨
∃̃g′ ≤∗ qgH∃̃f ≤∗g′∀̃d′ ≤∗Hg′∀̃x ≤∗ d′∃̃y ≤∗fx φ(x, y)]

is a theorem of the target theory E-PAω
st. Let t be λg, H.Hg and q be λg, H.g, and take arbitrary monotone 

standard g, H. We need to check that the disjunction between

(∗) ∃̃b′ ≤∗Hg∃̃x ≤∗b′∀̃c′ ≤∗gb′∀̃y ≤∗c′ ¬φ(x, y) and

(†) ∃̃g′ ≤∗ g∃̃f ≤∗g′∀̃d′ ≤∗Hg′∀̃x ≤∗ d′∃̃y ≤∗fx φ(x, y).

is a theorem of E-PAω
st. Suppose that ∃̃x′ ≤∗Hg∀̃y ≤∗gx′ ¬φ(x′, y). Take such an x′. Then we get (∗) by 

putting b′ and x as x′. Otherwise, ∀̃x′ ≤∗Hg∃̃y ≤∗gx′ φ(x′, y). In this case we have (†) by putting g′ and f
as g.

We now consider idealization: ∀x∃sty φ(x, y) → ∃̃stz∀x∃y ≤∗z φ(x, y). Modulo equivalence in E-PAω
st, we 

have that

(¬∀x∃sty φ(x, y))Ust is ∀̃stb¬∀x∃̃b′ ≤∗b∃y ≤∗b′ φ(x, y), and that
(∃̃stz∀x∃y ≤∗z φ(x, y))Ust is ∃̃stc∃̃c′ ≤∗c∃̃z ≤∗c′∀x∃y ≤∗z φ(x, y).

We need to check that there are closed monotone terms t of appropriate types such that

∀̃stb [¬∀x∃̃b′ ≤∗b∃̃y ≤∗b′ φ(x, y) ∨ ∃̃c′ ≤∗tb∃̃z ≤∗c′∀x∃̃y ≤∗z φ(x, y)]

is a theorem of E-PAω
st. It is not difficult to show that the term t := λb.b works.

The majorizability axioms have straightforward interpretations. �
The flattening Φ∗ of a formula Φ is, by definition, the formula obtained from Φ by replacing the stan-

dardness predicate stρ(x) by a provably universal predicate like the identity x =ρ x. Of course, internal 
formulas are unmoved by this translation. Note that quantifiers of the form ∀stx and ∀̃stx translate (up to 
logical equivalence) into ∀x and ∀̃x, respectively. Clearly, if E-PAω

st 	 Φ then E-PAω 	 Φ∗ (because the 
flattenings of the axioms of E-PAω

st are provable in E-PAω). Therefore, the conclusion of the above theorem 
can be replaced by E-PAω 	 ∀̃b ΦUst(b, tb). The following result is a particular case:

Corollary 1. The theory E-PAω
st + mACω

st + Rω + MAJωst is conservative over E-PAω.

In the terminology of nonstandard analysis, the translation described above goes by the name of inter-
nalization (the word ‘flattening’ comes from [4]). Before proceeding, the reader should be made aware (if he 
is not already) that the flattening of the theory E-PAω

st + mACω
st + Rω + MAJωst is (obviously) inconsistent.
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4. Recasting the bounded functional interpretation

In this section, we assume familiarity with the intensional theory PAω� and its bounded functional inter-
pretation, as exposed in [4]. We draw attention to the fact that the language of this theory contains, for each 
finite type σ, a primitive binary symbol �σ. These majorizability symbols are governed by certain axioms 
and a rule. The axioms are x �0 y ↔ x ≤ y and x �ρ→σ y → ∀u �ρ v (xu �σ yv ∧ yu �σ yv). The rule is

A ∧ u � v → su � tv ∧ tu � tv

A → s � t

where s and t are terms, A is a bounded formula (in the sense of [4]) and u and v are variables which do 
not occur free in the conclusion.

The remainder of this section explains how the bounded functional interpretation can be recast as a 
particular case of the interpretation of the previous section. For all it’s worth, the rule of thumb is that the 
intensional majorizability relations of PAω� should be viewed as “coming from” the ordinary majorizability 
relations of a nonstandard extension.

Let us consider a translation A � A� between formulas of the language of PAω� and formulas of E-PAω
st. 

The translation is given by the following clauses:

• (t =0 q)� is t =0 q;
• (t �σ q)� is t ≤∗

σ q;
• (A ∨B)� is A� ∨B�;
• (¬A)� is ¬A�;
• (∀xσA)� is ∀stxσA�;
• (∀x �σ t A)� is ∀x ≤∗

σ t A
�.

Clearly, this translation commutes with substitution. The next results show that the bounded functional 
interpretation A � AU ≡ ∀̃b∃̃cAU(b, c) defined in [4] can be seen as falling out from the interpretation of 
the previous section. The monotone quantifiers ∀̃ and ∃̃ of the U-interpretation are, of course, understood 
as being monotone with respect to the intensional majorizability relation (as opposed to ≤∗). In order not 
to multiply notation, we (ab)use the same notation for the two different notions, but the context should be 
enough to effect a proper disambiguation.

Proposition 1. For each formula A of the language of PAω� (possibly with parameters), we have the following:

E-PAω
st 	 ∀̃b, c [(AU(b, c))� ↔ (A�)Ust(b, c)]

E-PAω
st 	 [(AU)� ↔ (A�)Ust ]

where b and c are, respectively, the universal and existential variables of the pertinent functional interpre-
tations.

Observation 1. The following picture conveys the relationship between the translations given by the bounded 
functional interpretation U and the interpretation Ust of this paper.

PAω� U

�

PAω�
�

E-PAω
st Ust

E-PAω
st
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Proof. First of all, if A is a bounded formula of the intensional language of PAω�, it is clear that its translation 
A� is an internal formula. Hence the equivalences above hold trivially because the pertinent formulas are A�. 
This is the base case of a proof by induction on the complexity of A. The boolean cases are straightforward, 
as well as the case of the bounded quantifier. The interesting case is the unbounded quantifier.

Take the formula ((∀xA(x))�)Ust . This is (∀stxA(x)�)Ust , i.e., (∀x(st(x) → A(x)�))Ust . By defini-
tion, (A(x)�)Ust is ∀̃stb∃̃stc (A(x)�)Ust(b, c). Therefore, (st(x) → A(x)�)Ust is ∀̃sta∀̃stb∃̃stc (x ≤∗ a →
(A(x)�)Ust(b, c)). By the universal clause of the Ust-translation, the original formula is

∀̃sta∀̃stb∃̃stc∀x ≤∗ a (A(x)�)Ust(b, c).

By induction hypothesis, this is equivalent to ∀̃sta∀̃stb∃̃stc∀x ≤∗ a (A(x)U(b, c))� which, in turn, is 
(∀̃a∀̃b∃̃c∀x � a A(x)U(b, c))�. This is ((∀xA(x))U)�, as we wanted. The part for the lower transformations 
can be read from the previous calculations. �

The proof of the next result includes an argument showing how the intensional majorizability rule is 
dealt by the wider nonstandard setting. It is quite illuminating, we believe.

Theorem 2. If PAω� + mACω
bd + bCω + MAJωbd 	 A(z), where the free variables are as shown, then

E-PAω
st + mACω

st + Rω + MAJωst 	 st(z) → A(z)�.

Observation 2. The principles mACω
bd, bCω and MAJωbd are the characteristic principles of the bounded 

functional interpretation of [4].

Proof. The diamond translation is a relativization to the standard predicate st (modulo the replacement 
of � by ≤∗). This relativization is in good standing since the closed terms are standard, standardness is 
preserved by term application and an element majorizable by a standard element is itself standard (this is 
the content of the last three standardness axioms). Therefore, the property of the theorem is preserved by 
logical consequence. We need to check two things: (1) that if A(z) is an axiom of PAω�+mACω

bd+bCω+MAJωbd
(including the induction axioms), then st(z) → A(z)� is a theorem of the target theory E-PAω

st+mACω
st+Rω+

MAJωst; (2) that the property of the theorem is preserved by the rule governing the intensional majorizability
relations.

Intensional bounded quantification is a primitive of the language of PAω�. It is regulated by the axiom 
scheme ∀x � t(z)A(z, x) ↔ ∀x(x � t(z) → A(z, x)). Under the hypothesis st(z), the diamond translation of 
this axiom is a theorem of the target theory due (essentially) to the second standardness axiom. The equality 
axioms of PAω� are treated minimally in the manner described in [14]. These are open axioms (without the 
intensional majorizability sign) and, hence, they are translated by themselves. Since the target theory has a 
stronger theory of equality (extensional equality regulated by the extensionality axiom), their translation is 
provable there. Apart from the scheme of induction, the arithmetical axioms are also open axioms (without 
the intensional sign) and, therefore, pose no trouble. The induction scheme is taken care by the external 
induction scheme of the target theory.

Clearly, the first characteristic principle mACω
bd translates into cases of mACω

st (note that bounded formulas 
of the intensional language translate into internal formulas of the language of the target theory). The 
translation of the third characteristic principle MAJωbd is, exactly, MAJωst. The diamond translation of bCω is

∀x ≤∗w∃styA(y, x)� → ∃̃stz∀x ≤∗w∃y ≤∗ z A(y, z)�,
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where A is a bounded intensional formula (hence, A(y, z)� is an internal formula). Let us assume ∀x ≤∗

w∃styA(y, z)�. Therefore, ∀x∃sty (x ≤∗w → A(y, z)�). Since the formula x ≤∗w → A(y, z)� is internal, we 
may apply the realization axiom Rω to obtain ∃̃stz∀x∃y ≤∗z (x ≤∗w → A(y, z)�). The conclusion is now 
immediate.

It remains to check the two axioms and the rule of the intensional majorizability relations. Even though 
the axioms are very easy to deal with, we discuss the second axiom. We must show that the target theory 
proves

st(x) ∧ st(y) ∧ st(v) → (x ≤∗ y → ∀u(u ≤∗ v → xu ≤∗ yv ∧ yu ≤∗ yv)).

This is obvious. It is even true without the standardness restriction on v (and on x and y, but these are 
not important). Note that it is precisely this restriction on v that prevents the converse conditional (of the 
second majorizability axiom) from being interpreted. However, we will now see that the rule (which is a 
weakening of the converse conditional) preserves the property of the theorem. Suppose that

PAω� + mACω
bd + bCω + MAJωbd 	 A(z) ∧ u � v → s(z)u � t(z)v ∧ t(z)u � t(z)v,

where A is a bounded intensional formula and s and t are terms (the variable z stands for the parameters). 
By induction hypothesis, the target theory proves

st(z) ∧ st(u) ∧ st(v) → (A(z)� ∧ u ≤∗ v → s(z)u ≤∗ t(z)v ∧ t(z)u ≤∗ t(z)v).

By the soundness theorem of the previous section, it is easy to conclude that the theory E-PAω
st proves

∀̃sta, b, c∀z ≤∗ a∀u ≤∗ b∀v ≤∗ c (A(z)� ∧ u ≤∗ v → s(z)u ≤∗ t(z)v ∧ t(z)u ≤∗ t(z)v).

By flattening (note that A is a bounded intensional formula and, hence, A� is already flattened), the theory 
E-PAω proves

∀̃a, b, c∀z ≤∗ a∀u ≤∗ b∀v ≤∗ c (A(z)� ∧ u ≤∗ v → s(z)u ≤∗ t(z)v ∧ t(z)u ≤∗ t(z)v).

Hence, E-PAω proves

∀̃a∀z ≤∗ a (A(z)� → ∀̃b, c∀u ≤∗ b∀v ≤∗ c (u ≤∗ v → s(z)u ≤∗ t(z)v ∧ t(z)u ≤∗ t(z)v).

Using the fact that u ≤∗ v → v ≤∗ v, we get

E-PAω 	 ∀̃a∀z ≤∗ a (A(z)� → ∀u∀v (u ≤∗ v → s(z)u ≤∗ t(z)v ∧ t(z)u ≤∗ t(z)v).

By definition of majorizability, E-PAω proves ∀̃a∀z ≤∗ a (A(z)� → s(z) ≤∗ t(z)). Since E-PAω is a subtheory 
of E-PAω

st, the latter theory also proves this fact. It easily follows that E-PAω
st + MAJωst 	 st(z) → (A(z)� →

s(z) ≤∗ t(z)). We are done. �
The above argument regarding the intensional majorizability rule reflects a particular case of the fact 

that the theory E-PAω
st + mACω

st + Rω + MAJωst is closed under the following rule:

∀stv φ(v)
˜ ∗
∀b∀v ≤ b φ(v)
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where parameters are allowed and v (and the corresponding b) may stand for more than one variable. (This 
is a rule-version of the transfer principle for universal formulas. In Appendix A, we discuss axiom-versions 
of the transfer principle.) The argument for this general rule follows the blueprint of the particular case 
considered in the proof of the above theorem. Suppose that E-PAω

st + mACω
st + Rω + MAJωst 	 ∀stv φ(v). By 

Theorem 1, it is easy to conclude that E-PAω
st 	 ∀̃stb∀v ≤∗ b φ(v). By flattening, ∀̃b∀v ≤∗ b φ(v) is provable 

in E-PAω and, a fortiori, in E-PAω
st + mACω

st + Rω + MAJωst.
It is clear that the bounded functional interpretation of [4] is but a particular case of the wider interpre-

tation of this paper. As a matter of fact, we can deduce (the flattened version of) the soundness theorem of 
[4] using the results of this section. To see this, suppose that PAω� + mACω

bd + bCω + MAJωbd 	 A(z), where 
the free variables are as shown. By the above theorem, E-PAω

st + mACω
st + Rω + MAJωst 	 st(z) → A(z)�. An 

easy computation shows that the Ust-interpretation of st(z) → A(z)� is

∀̃sta, b∃̃stc∀z ≤∗ a (A�)Ust(b, c, z).

Hence, by Theorem 1, there is a closed monotone term t such that

E-PAω
st 	 ∀̃sta, b∀z ≤∗ a (A�)Ust(b, tab, z).

By Proposition 1,

E-PAω
st 	 ∀̃sta, b∀z ≤∗ a (AU(b, tab, z))�.

Since AU is an intensional bounded formula, it is clear that its diamond translation is nothing but its 
flattening (in the sense given in [4]). Hence,

E-PAω 	 ∀̃a, b∀z ≤∗ a (AU(b, tab, z))∗.

Well, this is the conclusion of the soundness theorem of [4] after flattening. (The attentive reader will 
have noticed that in [4] the verification of the interpretation – after flattening – was done within a theory 
with a minimal treatment of equality. The difference with the present setting is explained by the fact that 
we have worked with the theory E-PAω

st, a theory with full extensionality. Had we worked with a suitable 
version of this theory with the minimal treatment of equality, we would have obtained a perfect match.)

Appendix A

Both the interpretation of this paper and the interpretation of Berg et al. have characteristic principles 
which are forms of idealization and standardness, as introduced by Nelson in [11]. Conspicuous by its absence 
is the transfer principle (the ‘T’ of Nelson’s IST). In our setting, it can be formulated as follows:

Transfer Principle TP∀ : ∀stz (∀stv φ(v, z) → ∀v φ(v, z)),

where φ(v, z) has no undisplayed free variables (note that, according to our conventions, z and v may stand 
for more than one variable). This principle is incompatible with E-PAω

st+Rω and, therefore, it cannot be 
added to our theory E-PAω

st and its characteristic principles. To see this, consider the logical truth

∀stz ≤∗
11∃stk0(∃stn0(zn = 0) → zk = 0).
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It is a consequence of TP∀ that ∃stn(zn = 0) is equivalent to ∃n(zn = 0) for standard z. Hence, we get 
the proposition ∀z ≤∗ 1 (∃n(zn = 0) → ∃stk(zk = 0)). Note that we are using the second standardness 
axiom to remove the standardness condition on z. Take r a nonstandard natural number and let z be 
λi0.(if i ≤ r then 1, otherwise 0). Clearly, the proposition fails for this functional z. (The version of the 
transfer principle corresponding to the transfer rule discussed in Section 4 is refuted by the same example.)

In the case of the theory of Berg et al., we can argue that E-PAω∗
st + I + HACint + TP∀ (cf. [15] for the 

notation) is not a conservative extension of E-PAω∗
st . This answers negatively a conjecture of Berg et al. at the 

end of Section 7 of [15]. Let φ(n0, k0) be a bounded first-order formula such that ∃k φ(n, k) does not define a 
recursive set. By logic alone, ∀stn∃stk (φ(n, k) ∨∀stk¬φ(n, k)). By TP∀, we get ∀stn∃stk (φ(n, k) ∨∀k¬φ(n, k)). 
Applying the herbrandized axiom of choice for internal formulas HACint, we may infer that ∃stf∀stn∃k ≤
fn (φ(n, k) ∨ ∀k¬φ(n, k)). By TP∀ again,

∃stf∀n∃k ≤ fn (φ(n, k) ∨ ∀k¬φ(n, k)).

A fortiori, ∃f∀n∃k ≤ fn (φ(n, k) ∨ ∀k¬φ(n, k)). From this fact, it is easy to argue that ∃g∀n (gn = 0 ↔
∃kφ(n, k)). Since this is an internal formula, by conservativity this would be provable in E-PAω. It is 
well-known that this is not the case because the above form of comprehension fails in the model HEO of 
the hereditarily effective operations (see, for instance, [1]).

Note that the second application of TP∀ in the above argument is made with respect to the matrix 
∃k ≤ fn (φ(n, k) ∨ ∀k¬φ(n, k)). This formula has a type 1 parameter (the variable f). We do not know 
if the transfer principle restricted to first-order matrices can be added to E-PAω∗

st + I + HACint so that the 
extended theory is conservative over E-PAω.

If we do not worry about the complexity of the matrices φ of the transfer principle TP∀, much stronger 
consequences can be proved. For instance, we can prove the existence of the non-continuous type 2 functional 
2E satisfying the following property: 2E(z1) = 0 ↔ ∃n0(zn = 0). In effect, by TP∀, ∀stz (∃n(zn = 0) →
∃stn(zn = 0)). Equivalently, ∀stz∃stn (∃n(zn = 0) → zn = 0). By HACint, we get

∃stF∀stz∃n ≤ Fz (∃n(zn = 0) → zn = 0).

By the transfer principle again we can remove the standardness condition on z. Therefore, ∃stF∀z∃n ≤
Fz (∃n(zn = 0) → zn = 0). Take such an F . We obtain

∀z (∃n(zn = 0) ↔ ∃n ≤ Fz (zn = 0)).

The functional 2E can now easily be defined in terms of F .
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