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rigourous) proofs. Descartes showed us that we could re-describe geometry using arithmetic.
Hilbert sought to rid all geometric proofs of geometrical intuition, and replace them with
formal, uninterpreted calculation. So we had a complete reversal, where first geometry set
the higher standard of rigour and then algebra set the higher standard. All this was done in
the name of increasing rigour.
In the paper, we will (1) list some of the different motivations for increasing rigour of a

mathematical argument, then (2)wewill search for a characterisation of rigour, by comparing
it to the notion of gapless proof. (3)We then draw some conclusions fromwhat we discovered
in (1) and (2). In the conclusions we confirm that rigour is a relative term, and it varies with
respect to quantity and quality (rigour in geometry is not obviously the same as rigour in
arithmetic). To try to make an ordinal comparison between different (prima facie) qualities
of rigour we have to reduce one type of proof to the other or express both proofs in a
foundational theory and, philosophically, this is not a trivial matter. But rigour is not, for
all that, an unconstrained term. There are completely definite things we can say, and some
ordinal comparisons can be made, provided we understand the context for the comparison.
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A proof interpretation I of a theory T1 in a theory T2 is a function mapping a formula A

of T1 to a formula AI (x) of T2 (with distinguished variables x) verifying T1 ⊢ A ⇒ T2 ⊢
AI (t) for some terms t extracted from a proof of A. Proof interpretations are used in:

• consistency results (e.g., if ⊥I (x) = ⊥, then T1 ⊢ ⊥ ⇒ T2 ⊢ ⊥, i.e., T1 is consistent
relatively to T2);

• conservation results (e.g., if T2 ⊢ AI (x) → A for Π02 formulas A, then T1 ⊢ A ⇒
T2 ⊢ A, i.e., T1 is conservative over T2 for Π

0
2 formulas);

• closure under rules (e.g., if T1 = T2, (∃yA(y))I (x) = AI (x) and T1 ⊢ AI (x)→ A(x),
then T1 ⊢ ∃yA(y)⇒ T1 ⊢ A(t) for some term t, i.e., T1 has the existence property);

• extracting computational content from proofs (e.g., extracting t in the previous point).

The last two applications need T1 ⊢ AI (x)→ A that can be achieved by:

• upgrading T1 to the characterization theory CT that proves ∃xAI (x)↔ A;
• or hardwiring truth in I obtaining It verifying T1 ⊢ AIt(x)→ A.

The first option doesn’t work if:

• CT is classically inconsistent (e.g., bounded proof interpretations);
• or we want applications to theories weaker than CT.

So we turn to the second option and present a method to hardwire truth (in proof interpre-
tations of Heyting arithmetic satisfying some mild conditions) by defining:

• a function c that replaces each subformula A of a formula by A ∧ Ac where Ac is a
“copy” of A;

• an “inverse” function c−1 that replaces Ac by A;
• It = c−1 ◦ I ◦ c.

As examples we hardwire truth in:

• modified realizability;
• Diller-Nahm functional interpretation;
• bounded modified realizability;
• bounded functional interpretation;
• slash.
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The problem of description of spectra of computable models is nontrivial in the case where

a theory is ù1- and not ù-categorical. In the case of Ehrenfeucht theories, the computable
models spectrum and the decidable models spectrum are both hard to describe. This paper
adds several new spectra of computable models for the case of Ehrenfeucht theories to the
list of known spectra.
A model is said to be quasi-prime over a type p if it is prime over a finite tuple of constants

which realize the type p. A model M is said to be limit over a type p if M =
⋃

n∈ù

Mn , for

some elementary chain (Mn)n∈ù of quasi-prime models over p, andM 6∼=Mp . M is said to
be a quasi-prime (limit) model if it is quasi-prime (limit) over some type.
Every model of an Ehrenfeucht theory (a theory with finite, greater then 1, number of

countable models) is either quasi-prime or limit.
A pair 〈X, F 〉, whereX is a pre-ordered finite set and F : X → ù, is said to be e-parameters

of the theory T if (1) X is isomorphic to the set of all quasi-prime models of the theory T
with the relation of elementary embeddability →֒; (2) for all x ∈ X , the number of limit
models over a quasi-prime model corresponding to the element x coincides with F (x).
Spectrum of computable (decidable) models of an Ehrenfeucht theory T with e-parameters

〈X, F 〉 is a pair 〈Y,G〉 whereY is a subset ofX corresponding to the computable (decidable)
quasi-prime models of the theory T ,G(x) 6 F (x) for all x, and the values of G correspond
to the number of computable (decidable) limit models.

Theorem 1. Let n > 2, m 6 n − 1, and the pairs 〈X,F 〉 and 〈Y,G〉 are defined as follows:

X = {x0 < x1 6 · · · 6 xn | xn 6 · · · 6 x1}, F (x0) = 0, F (x1) = · · · = F (xn) = 1;

Y = {x1 6 · · · 6 xm | xm 6 · · · 6 x1}, G(x0) = 0, G(x1) = · · · = G(xn) = 1.

Then there is the theory T satisfying the following conditions:

1. 〈X,F 〉 are e-parameters of the theory T ;
2. T has exactly n + 2 non-isomorphic countable models;
3. 〈Y,G〉 is a spectrum of computable models of the theory T .

Thus, for any m and n, there exist n →֒-equivalent quasi-prime models among which
exactly m models are computable. In the case of decidable models we have the following. If
a quasi-prime model A is →֒-equivalent to a decidable one then A is decidable.

Theorem 2. Let 〈X,F 〉 be such thatX = {x0 < x1 < x2}, F (x0) = F (x1) = 0, F (x2) = 3,
and G : X → ù is defined by G(x0) = G(x1) = 0, G(x2) = 2. Then there is a theory T
satisfying the following conditions:

1. 〈X,F 〉 are e-parameters of the theory T ;
2. T has exactly 6 non-isomorphic countable models;
3. 〈{x0}, G〉 is a spectrum of computable models of the theory T .

Thus, there are limit over the same type models one of which is computable and the other
does not. In the case of decidable models, the question of existence of such models is known
as the Morley Problem.


